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Abstract

This study investigates how contract provisions affect the valuation of an insurer’s contingent

capital and highlights the divergent perspectives of sellers, the insurer’s debtholders, and equity

holders. Using real-world CatEPut contracts, we uncover the pivotal role of early exercise and

net-worth provisions in enhancing contract tradability and the insurer’s firm-levered value, mainly

through bankruptcy costs. Our novel model integrates catastrophe risk, insolvency risk, capital

structure, emergency capital injection, and equity dilution. Our analyses provide a theoretical

foundation for the design of general contingent capital contracts, bridging a critical gap in current

research.
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1 Introduction

Climate and catastrophe risks have received increasing attention within the insurance sector over

the past decades. According to Swiss Re (2018), catastrophic events in 2017 resulted in a record-

breaking $377 billion in total economic losses and $144 billion in insured losses. Looking ahead, Gates

(2021) expressed his concerns, stating:

In the next decade or two, the economic damage caused by climate change will likely be

as bad as having a COVID-sized pandemic every 10 years.

Catastrophes not only lead to substantial losses but also undermine the fundamental insurance princi-

ples of the law of large numbers, thereby impeding insurers’ ability to effectively diversify risk (Froot,

2001; Froot and O’Connell, 2008). These challenges surpass the capacities of traditional reinsurance
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approaches and adversely impact insurers’ financial stability. Consequently, the practice of transferring

catastrophe risks to the capital markets using contingent capital facilities has emerged as a modern

solution within the insurance sector.1

A contingent capital facility grants the holder the right to issue new debt or equity after a specified

triggering event within a predefined period at a predetermined issue price. In 1996, RLI Corp’s

issuance of CatEPut2 marked the insurance industry’s first contingent equity transaction, following

RLI’s substantial losses resulting from the 1994 Northridge earthquake (Culp, 2011). Under this

arrangement, RLI can issue convertible non-voting preferred shares, valued at up to $50 million, as

a timely capital injection if a major Californian earthquake is triggered within three years. Another

compelling case involves SCOR, which encountered significant losses from calamities in Australia, New

Zealand, and Japan in 2011 and subsequently issued shares worth up to e75 million to UBS due to the

CatEPut trigger (Culp, 2011). Notably, the Artemis news website reported that SCOR recently initiated

its fourth renewal of contingent capital facilities for the period spanning 2023 to 2025, with a capital

capacity of up to e300 million, primarily oriented towards the transfer of catastrophe and extreme

mortality risks. These real-world transactions solidly affirm the practicality of contingent capital

facilities as a balance sheet recovery mechanism, effectively bolstering insurers’ financial stability and

aiding risk transfer in the event of a catastrophe.3

Although contingent capital facilities play a critical role in catastrophe risk management and sol-

vency maintenance, it is imperative to recognize both their costs and benefits, as well as potential

conflicts of interest among the parties involved. However, the valuation of insurers’ contingent capital,

especially contingent equity, poses challenges due to their intricate contract designs.4 These facilities

essentially operate as dual-trigger put options, contingent on two conditions: the first trigger occurs

when catastrophe losses accumulate to a predetermined level, and the second condition is triggered

when the stock price of the contract buyer (typically an insurer) falls below the strike price (i.e.,

the predetermined issue price).5 The complexity arises as the insurer’s stock price both determines

the option trigger and is influenced by the post-trigger capital injection, leading to an endogeneity

problem (Lo et al., 2013; Sundaresan and Wang, 2015; Glasserman and Nouri, 2016). This problem

intensifies in cost-benefit analysis, as financing costs reduce the insurer’s post-purchase asset value

(along with other claimholders’ values), whereas the emergency capital injection strengthens the post-
1For more details on other insurance-linked securities, see Härdle and Cabrera (2010), Lakdawalla and Zanjani (2012),

and Zhao and Yu (2020) for catastrophe bonds, and Braun (2011) and Lo et al. (2021) for catastrophe swaps.
2The trademark CatEPut, originating from catastrophe equity puts, is registered with the insurance broker Aon and

stands as one of the most famous contingent equity products in the insurance industry.
3Contingent capital facilities have captured attention not only within the insurance domain but also in banking,

particularly following the 2008 financial crisis (see Hilscher and Raviv, 2014; Pennacchi et al., 2014; Sundaresan and
Wang, 2015; Chen et al., 2017; Pennacchi and Tchistyi, 2019).

4Lo et al. (2013) argue that contingent debt, such as contingent surplus notes, shares a contract design that is similar
to but simpler than contingent equity. Hence, this study concentrates on contingent equity.

5Within the banking industry, the catastrophe trigger in contingent capital is substituted by the market trigger (see
Sundaresan and Wang, 2015; Glasserman and Nouri, 2016; Chen et al., 2017; Pennacchi and Tchistyi, 2019).
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exercise values. In addition to the price endogeneity, timely capital injection is expected to alleviate

the insurer’s insolvency risks in the face of catastrophe; nevertheless, the issuance of new shares dilutes

the value of existing shareholders (Koziol and Lawrenz, 2012; Pennacchi et al., 2014; Sundaresan and

Wang, 2015; Chen et al., 2017; Liu et al., 2022). Note that the gains and losses of contingent equity

buyers and sellers vary due to the altered default likelihood caused by emergency capital injections,

leading to divergent valuation perspectives.6

The above-mentioned valuation complexities are amplified by considering real-world contract pro-

visions that influence the rights and obligations of the parties involved.7 Upon examining the contract

specifics in the financial statements of contingent equity buyers such as RLI Corp, Horace Mann

Educators Corporation, LaSalle Re Educators Corporation, and the Trenwick Group, we observe a

common structure. These real-world contracts consistently take the form of multi-year American-style

options and include a net-worth provision.8 The American-style contract grants the buyer the right

to immediately issue equity once the contract is triggered, even before its scheduled expiration. This

early exercise provision usually increases the time value of put options. Conversely, the net-worth

provision imposes a condition on the insurer: it cannot exercise the option if its GAAP net worth

falls below a pre-agreed threshold.9 This provision reduces the contract value and acts as a knock-out

barrier option to protect the seller from the obligation of injecting emergency funds into an insurer that

might be struggling financially and unable to continue its operations. By including the two provisions

in our study, we seek to investigate the tradability of insurers’ contingent capital and its impact on

claimholder values from both the buyer’s and seller’s viewpoints.

To tackle these challenges, we develop a novel twin-tree model with jumps (TTMJ) to value contingent

equity, analyzing the changes in claimholders’ values after the transaction and exploring whether the

contract design benefits both parties. This model integrates several concepts from the literature. First,

inspired by Liu et al. (2016)’s forest method, we construct two trees to simulate asset value dynamics

before and after contingent capital exercise. Resembling parallel universes, this twin-tree structure

effectively addresses capital injection and equity dilution at the option trigger by transferring between

trees, reflecting changes in the asset value and capital structure. Second, we incorporate negative jumps

through a compound Poisson process into the insurer’s asset value to capture cumulative catastrophe

losses (Bakshi and Madan, 2002). Third, in line with the structural models of Sundaresan and Wang
6Specifically, mitigating the insurer’s insolvency risks extends the insurer’s life, granting additional tax-shield benefits

to insurers which are not paid by contingent equity sellers. A win-win scenario arises when the contingent equity purchase
price surpasses the seller’s minimum required price yet remains below the buyer’s maximum acceptable price.

7Analyzing the impact of real-world contract provisions parallels the approach taken by Pennacchi and Tchistyi
(2019), who introduce a real-world perpetuity feature for bank contingent convertibles to address the problem of missing
or multiple equilibria in stock prices identified in the banking literature.

8Many studies propose sophisticated models for the valuation of contingent equity; however, the majority of these
studies concentrate on the valuation of European-style contracts and tend to overlook net-worth provisions (see Cox
et al., 2004; Jaimungal and Wang, 2006; Chang et al., 2011).

9In the case of the RLI contract, it can only be exercised if the loss does not reduce equity to less than $55 million, as
stated in its 1997 10-K annual report. Similarly, the contracts of Horace Mann, LaSalle, and Trenwick include net-worth
provisions of $175 million, $175 million, and $125 million, respectively.
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(2015) and Chen et al. (2017), among others, the insurer insolvency is endogenously determined in

our model, and the capital injection from contract exercise can directly impact the insurer’s capital

structure and default risk.10 Fourth, the price endogeneity noted by Lo et al. (2013), Sundaresan and

Wang (2015), and Glasserman and Nouri (2016) can be solved by a simple iterative algorithm that

repeatedly applies our TTMJ. Finally, the TTMJ can address the early exercise provision (Lo et al., 2013;

Wang and Dai, 2018) and the net-worth provision (Doherty, 1997) to examine their impact on the

tradability of CatEPut contracts.

In our quantitative analyses, we retrieve RLI’s CatEPut contract details and RLI’s financial statuses

from its financial report as well as U.S. catastrophe data to rebuild the scenario in which RLI decides to

purchase the contract. Since our structural model incorporates various components, including company

assets, debt, equity value, bankruptcy costs, and tax benefits, we utilize the trade-off theory (see Kraus

and Litzenberger, 1973) both to affirm its validity and to analyze the changes in claimholders’ values

due to CatEPut purchases. However, in cases where catastrophe losses could exceed the insurer’s

asset value, as highlighted by Lakdawalla and Zanjani (2012), the traditional trade-off theory becomes

inadequate.11 Hence, we introduce a revised trade-off theory, enabling it to address situations such

as government bailouts or the financial burden shouldered by acquirers when taking over insolvent

insurance firms.12 These risks of reference entities have not been thoroughly analyzed in previous

studies, and our model addresses this gap by quantifying insolvency phenomena overlooked in the

traditional trade-off theory.

The main findings of this paper can be summarized as follows. First, when the buyer has high

leverage, the inclusion of a net-worth provision significantly reduces the likelihood of capital injections,

thereby lowering the seller’s minimum required price for the contract. Surprisingly, this provision has

received limited attention in the pricing literature. Second, the inclusion of both early exercise and

net-worth provisions can lead to mutually beneficial outcomes for sellers, insurers’ equity holders, and

debtholders. The early exercise provision facilitates timely capital injections, lowering the likelihood

of the insurer’s default and allowing the insurer to accept a higher price. Meanwhile, the net-worth

provision prevents ineffective capital injections that primarily benefit debtholders during liquidation,

leaving equity holders without compensation. Considering perspectives from both parties, we highlight

the crucial role of both provisions in enhancing contract tradability, making contingent capital transac-

tions more likely to occur. Third, changes in insurers’ firm-levered value due to the CatEPut purchase

are shown to be positive (negative) for contracts with (without) both provisions, and these changes
10Numerous studies (e.g., Cox et al., 2004; Jaimungal and Wang, 2006; Chang et al., 2011) adopt the reduced-form

approach to value the insurer’s contingent capital, modeling catastrophe risk as jumps in stock returns. However, when
acquiring contingent equity, this approach does not faithfully model the trade-offs between the costs and benefits of the
insurer’s capital structure due to capital injections and dilution.

11A notable example is the insolvency of eight property and casualty insurers caused by Hurricane Andrew in 1992.
See the news “Hurricane Andrew slammed into South Florida on August 23 and 24, 1992 – and changed the insurance
industry forever.”.

12For example, the government took over Access Home Insurance Company and State National Fire Insurance Com-
pany after Hurricane Ida in 2021. See the news with title “Louisiana Seeks Take-Over of Failing Insurers After Ida”.
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are primarily driven by changes in debt value (equity value). Last, our analysis, grounded in the re-

vised trade-off theory, reveals that the changes in firm-levered value are predominantly influenced by

changes in bankruptcy costs across all contract types. This analysis elucidates the mechanism behind

the enhancement of contract tradability by early exercise and net-worth provisions, reflecting their role

in reducing the insolvency risk borne by insurers.

This study makes a four-fold contribution to the existing literature. First, we highlight the valuation

disparities among contract parties, providing a channel to analyze the contract tradability. In contrast,

previous studies (Cox et al., 2004; Jaimungal and Wang, 2006; Chang et al., 2011) focus on the seller’s

viewpoint to evaluate the present value of emergency capital injections, which may not match the

buyer’s gain. Second, our model elucidates the rationale behind provisions commonly found in real-

world contracts but often overlooked in the literature (Chang et al., 2011; Lo et al., 2013; Wang and

Dai, 2018). We find that including both early-exercise and net-worth provisions simultaneously benefits

all claimholders, offering a new perspective on their role in contingent capital design. Third, we expand

the trade-off theory (Kraus and Litzenberger, 1973) to include the possibility of government bailouts or

losses incurred by acquirers when taking over insolvent insurance companies, a critical consideration for

contract buyers facing catastrophe risk. Finally, beyond our primary focus on CatEPuts, the generality

and flexibility of our valuation techniques are applicable to assessing the pros and cons of analogous

designs in other contingent claims (Sundaresan and Wang, 2015; Chen et al., 2017; Pennacchi and

Tchistyi, 2019).

The remainder of this article is as follows. Section 2 presents the model assumptions and tech-

niques for the valuation and reviews the relevant literature. Section 3 develops the TTMJ method,

evaluates the contingent capital facilities from both the seller’s and the buyer’s perspectives, and re-

vises the trade-off theory. Section 4 analyzes how the contingent capital provisions affect the contract

tradability and the changes in different parties’ benefits. Section 5 concludes this article.

2 Model

This section describes the model assumptions required to value a T -year contingent equity facility,

a dual-trigger option that transfers the insurer’s catastrophe risk to the capital markets. The first

trigger condition is that the cumulative catastrophe losses suffered by the option buyer (usually the

insurer) during the contract period must exceed a predetermined level L. To avoid such distress from

deteriorating the insurer’s financial status, a contingent equity facility grants the insurer the right

to raise capital by issuing Nnew new shares at a pre-agreed price K. Therefore, the second trigger

condition is that the insurer’s stock price is below the strike price K, inducing the insurer to exercise

the option contract.

To analyze the impact of the contingent equity (or the injection of new shares issued) on the benefits
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of claimholders of the insurer, we evaluate contingent equity and corresponding equity and debt values

by constructing a discrete-time tree model with time steps T ≡ {0,∆t, 2∆t, . . . , T}. This discrete-time

framework also allows us to tackle the early exercise decisions of the contract holder since real-world

CatEPut contracts are all American-style. Subsequently, we will introduce the settings of catastrophe

losses, asset values, debt values and default conditions, and equity values as well as stock prices in

Sections 2.1, 2.2, 2.3, and 2.4, respectively.

2.1 Catastrophe Losses

Natural catastrophes are rare, unanticipated, and can cause extensive and severe damage, exposing

insurers to potentially large claims. To characterize these features, Bakshi and Madan (2002) use

a compound Poisson process to model the aggregate catastrophe losses.13 They first identify the

occurrence of catastrophic events through a Poisson process, followed by another independent random

variable to determine the magnitude of catastrophe losses caused by each event.

Following previous studies, the occurrence of catastrophes in this study is determined by a Poisson

process with probability P (Nt+∆t − Nt = k) = e−λ∆t(λ∆t)k

k! , k = 0, 1, 2, . . ., where Nt denotes the

cumulative number of catastrophes occurring up to time t with an initial value of N0 = 0, and λ is the

intensity parameter describing the expected number of catastrophes per year. If no catastrophe occurs

during (t, t+∆t], then Nt+∆t = Nt and there are necessarily no catastrophe losses. However, if there

is at least one catastrophe during this period, the magnitude of the aggregated loss can be modeled by

a generalized Pareto distribution widely adopted in the literature, such as Hogg and Klugman (1983)

and Härdle and Cabrera (2010). To reflect the discrete characteristic of our model, we use the discrete

version of the Pareto distribution, i.e., the Zeta distribution, to model the magnitude of catastrophe

losses (see Malamud et al., 1998; Pollett et al., 2007). Assume that the loss magnitude of the i-th

catastrophe is Zi units, where Zi is a positive integer with a probability mass function of

P (Zi = z) =
z−s

ζs
, z ∈ N. (1)

Here, s > 1 is the shape parameter, and ζs =
∞∑
k=1

k−s is the Riemann zeta function. The loss unit can

be arbitrarily defined to determine the distribution of Zi to calibrate the catastrophe parameter s. For

example, we consider the statistics provided by Swiss Re (2018) on loss magnitudes and set the loss

unit to US$10 billion.

Note that Zi × $10 billion represents the global insured loss of the i-th catastrophe, while insurers’

contingent capital facilities are typically triggered based on the accumulated losses suffered by the

contract buyer. Thus, we estimate the loss of the i-th catastrophe suffered by the contract buyer as
13Compound Poisson jumps are also commonly used to model the value changes in the bank’s assets (see Sundaresan

and Wang, 2015; Chen et al., 2017), insurer liability (see Cummins, 1988; Duan and Yu, 2005; Gatzert and Schmeiser,
2008; Lo et al., 2013), and the share prices (see Jaimungal and Wang, 2006; Chang et al., 2011).
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the buyer’s market share m multiplied by the whole market loss, denoted by Li ≡ m×Zi×$10 billion.

For example, in 1996, the market share of RLI Corporation in California was approximately 0.18%, so

the amount of RLI’s losses caused by the i-th catastrophe is estimated to be Zi × $18 million.

We set an upper bound for Zi at a sufficiently large number, such as 15 in our subsequent ex-

periments, for the following three reasons.14 First, insurance policies generally specify a maximum

indemnity amount, so the catastrophe loss suffered by an insurer is also bounded. Second, according

to a report by Swiss Re, global insurance losses for natural catastrophes in 2021 are estimated to be

about $105 billion, which is the sum of all catastrophes in a year.15 Setting the cap at 15 implies

that the maximum possible loss is $150 billion, which should be sufficient to cover the loss caused by

one catastrophe. Third, the probability value of Equation (1) decays rapidly and does not affect our

valuation and quantitative analyses even when we relax the upper bound.

2.2 Asset Value

Similar to the structural models of Sundaresan and Wang (2015) and Chen et al. (2017), we assume

that the insurer’s asset value consists of a log-normal diffusion process and a compound Poisson jump

process to capture catastrophe losses. Therefore, the dynamic of the insurer’s asset value Vt under our

discrete-time framework is assumed to be:

Vt+∆t = Vte
(µt−σ2

2
)∆t+σ(Wt+∆t−Wt) − (1− τ)cD∆t−

∆Nt∑
i=0

Li, (2)

where µt is the time-varying drift term, σ is the volatility of the diffusion term, and Wt is a Wiener

process. The second term of Equation (2) describes the coupon payment excluding tax benefits for

each time period, where τ denotes the tax rate, c denotes the coupon rate, and D denotes the face

value of the debt. The last term of Equation (2) shows the reduction in firm value due to catastrophe

losses during the period (t, t+∆t], as defined in Section 2.1, where ∆Nt represents Nt+∆t −Nt.

Modeling the impact of catastrophe losses on asset values is critical since catastrophes can deteri-

orate the insurer’s financial status and even lead to insolvency.16 We model this negative impact by

downward jumps in firm value rather than in the log return to firm value, unlike much of the structural

model literature, such as Sundaresan and Wang (2015) and Chen et al. (2017). Our concern is that

modeling catastrophe losses through a jump term in log returns is more likely to generate minor (more

significant) losses when the insurer has experienced a decline (rise) in asset value. This relationship

contradicts Froot (2001), Cummins and Trainar (2009), and Ammar (2020), who argue that catastro-

14Technically, ζs is truncated to
15∑

k=1

k−s and P (Zi > 15) is set to zero.
15See the news with the title “Global insured catastrophe losses rise to USD 112 billion in 2021, the fourth highest on

record, Swiss Re Institute estimates.”
16For example, two property insurance companies—State National Fire Insurance Company of Baton Rouge and

Access Home Insurance Company of New Orleans in Louisiana—entered insolvency after severe losses from Hurricane
Ida in 202112.
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phe risk is uncorrelated with a firm’s financial risk. In contrast, the magnitude of catastrophe losses is

not associated with the change in asset values if we model losses as jumps in firm values.

2.3 Debt Value and Default Boundary

A structural model pioneered by Merton (1974) views the value of a claim, say, the debt value, as

a contingent claim on the insurer’s asset defined in Equation (2). Debt holders can only recover part

of their funds when the insurer becomes insolvent, and this paper defines the time point of insolvency

using the first passage time model as t∗ = inf{t ≥ 0 | Vt ≤ Bt}. The default boundary at time t,

denoted as Bt, is defined as the present value of the future coupon and debt principal repayments

before maturity T . Formally, Bt =
∑

t<tj≤T

(1 − τ)cDe−r(tj−t) + De−r(T−t), ∀ t ≤ T , where r is the

risk-free rate and tj denotes the coupon payment date. In particular, the default boundary at maturity

BT is exactly the face value of the debt D.

When the insurer becomes insolvent at time t∗, debtholders receive the value of the insurer’s after-

liquidation assets, (1 − α)Vt∗ , where the constant fraction α measures the liquidation cost (Leland,

1994; Collin-Dufresne and Goldstein, 2001; Sundaresan and Wang, 2015). We do not consider the

recovery of future coupon payments because, as Collin-Dufresne and Goldstein (2001) suggest, claims

on future coupon payments have the lowest priority. Therefore, the time-t debt value of a solvent

insurer can be expressed as

Dt = EQ
t

 ∑
t<tj≤T

cDe−r(tj−t)1{t∗>tj} +De−r(T−t)1{t∗>T} + (1− α)Vt∗e
−r(t∗−t)1{t∗≤T}

 , (3)

where EQ
t [·] is the expectation under the risk-neutral measure and 1{·} is the indicator function. The

first term in the expectation shows the present value of all future coupon payments before the insolvent

event; the second term denotes the present value of the principal repayment given that the insurer is

solvent; and the last term shows the funds recoverable at the point of insolvency. Although there is

no closed-form formula for the debt value in Equation (3) under our model assumptions, this study

proposes a numerical method to evaluate the values of debt and other claims, as detailed in Section 3.1.

Note that the debt value is related to the leverage ratio defined by η ≡ D/V0 (see Leland,

1994). Specifically, the relation is implicitly embedded in Equation (3) of the indicator functions

1{t∗>T}, 1{t∗>tj}, and 1{t∗≤T}. This relation also influences the valuation of tax benefits TBt =

τEQ
t

 ∑
t<tj≤T

cDe−r(tj−t)1{t∗>tj}

 and the bankruptcy costs BCt = αEQ
t

[
Vt∗e

−r(t∗−t)1{t∗≤T}
]
. Note

that contract buyers receive tax benefits through reduced tax payments, which are not contributed by

sellers. In addition, the option payoffs provided by the sellers might flow to bankruptcy costs instead

of being received by the buyers. Our analyses capture the aforementioned inconsistency between the

seller’s payout and the buyer’s gain and thus can produce different valuation results from buyers’ and
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sellers’ perspectives.

2.4 Equity Value and Stock Price

According to Black and Cox (1976) and Brockman and Turtle (2003), the equity value can be

viewed as a down-and-out call option on the firm’s asset value, with a strike price equal to the debt

face value plus the coupon payment at maturity. Consequently, the equity value Et can be expressed

as

Et = e−r(T−t)EQ
t

[
max{VT − (1 + c)D, 0}1{t∗>T}

]
, (4)

where the indicator function means that the insurer remains solvent at maturity. In addition, the stock

price of the insurer St can be defined as St =
Et
N , where N denotes the number of shares outstanding.

A contingent equity facility grants the insurer the right to issue Nnew new shares when both the

accumulated catastrophe losses and the stock price reach their trigger conditions. At that time, its asset

value increases due to the timely fund injection from the issuance of new shares, and the post-exercise

asset value V ′
t becomes Vt +Nnew ×K. However, the new shares also dilute the percentage ownership

of existing equity holders since the number of shares outstanding increases to N ′ = N +Nnew. Similar

to Lo et al. (2013) and Sundaresan and Wang (2015), the post-exercise stock price can be expressed

as S′
t =

E′
t

N ′ , where the post-exercise equity value E′
t is expressed as

E′
t = e−r(T−t)EQ

t

[
max{V ′

T − (1 + c)D, 0}1{t∗>T}
]
, t ≥ t#, (5)

and the exercise time t# is the first passage time of the contract trigger:

t# = inf{t ∈ T |
Nt∑
i=0

Li ≥ L ∧ S′
t ≤ K}. (6)

To the best of our knowledge, the net-worth provisions have received limited attention in the lit-

erature. Recall that when the insurer exercises a contingent equity, the seller is obligated to purchase

the new shares issued by the insurer. However, in case of severe catastrophes that significantly dete-

riorate the insurer’s financial status, funds thus injected by the seller may not save the insurer from

insolvency. To avoid such worthless fund injections, the net-worth provision requires the insurer to

have a certain level of net assets when exercising contingent equity facilities. Thus, we model the net-

worth provision to knock out the option when the post-exercise asset value still falls below the default

boundary. Interestingly, our later quantitative analysis shows that the absence of this provision may

not simultaneously improve the benefits of sellers and buyers, making the contract non-tradable.
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3 Valuation of Contingent Capital

Section 3.1 develops the TTMJ, a sophisticated tree model to model the corresponding capital

structure changes and firm value injections for the valuation of a complex contingent capital—such as

the contingent equity facility discussed in this paper—that cannot be solved analytically. In addition,

the valuation of contingent equity differs from the perspectives of the seller and the buyer since the

seller’s fund injections do not match the buyer’s gain. Since rational participants do not trade in

such a way as to sacrifice their benefits, we assess the tradability of contingent equity in Section 3.2

by comparing the seller’s minimum with the buyer’s maximum acceptable prices. Finally, we revise

the trade-off theory in Section 3.3 to consider the scenario in which the insurer’s assets do not

cover catastrophe losses and analyze how the benefits of and losses from buying contingent equity are

distributed to claimholders and their behaviors.

3.1 Valuation Method: TTMJ

To evaluate the changes in the values of claimholders due to the issuance of contingent equity and

the value of potential capital injections, we build a TTMJ by combining the forest structure proposed

in Liu et al. (2016) and the lattice (or tree) structure proposed in Wang and Dai (2018). Generally

speaking, a tree structure divides a time period, say, the life period of a contingent equity facility, into

discrete time steps and discretely specifies the evolution of an underlying asset, say, the firm value

process defined in Equation (2). Our TTMJ is composed of two trees that model the evolutions of the

firm value before or after the exercise of contingent equity.

3.1.1 Review of Liu et al. (2016) and Wang and Dai (2018)

The twin tree structure and its connection for simulating firm value injections due to the exercise

of contingent equity can be modeled by mimicking the forest structure proposed by Liu et al. (2016)

as shown in Figure 1.17 Specifically, it simulates financing early redemption of callable bonds with

the firm value and corresponding change of the debt structure with the transition from the upper tree

to the lower one. The downward jump of the call price CP in the firm value due to bond redemption

reduces the firm value from node U to node W (in the upper tree). Liu et al. use the trinomial structure

proposed by Dai et al. (2010) to build the outgoing branches from node W to nodes X, Y , and Z to

model the evolution of after-redemption firm value.

To simulate drops in the firm value due to catastrophic events, we take advantage of the lattice

structure proposed by Wang and Dai (2018), which decomposes a time step into diffusion and jump

phases, as illustrated in Figure 2.18 The diffusion phase models the log-normal diffusion of the firm

value as denoted by the first term on the right-hand side of Equation (2). The jump phase simulates
17See Figure 3 in Liu et al. (2016).
18See Figure 2 in Wang and Dai (2018).
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Figure 1: Forest Model. We illustrate the forest structure proposed in Figure 3 of Liu et al. (2016) composed
of two trees for simulating the firm value process before and after redeeming a callable bond. The change in
the firm value and the capital structure due to bond redemption at time t is modeled by transitions from the
upper tree to the lower tree.

the firm value jump magnitude due to catastrophe losses modeled by revising the lattice structure for

log-normal jumps in Wang and Dai (2018).19 As shown in Figure 2, Wang and Dai (2018) simplify

the jump magnitudes by discrete upward and downward jumps with integers +1 and −1 to reflect the

jump size h and −h,20 respectively. The accumulated jump sizes can be modeled as h times the sums

of integers, as illustrated by the numbers in red beside that node. For example, the upper (lower) blue

curve denotes the scenario in which the loss at the first time step is −h and that at the second time

step is 0 (−h); the accumulated loss at the end of the second time step is −h (−2h). Additional states

for each tree node that reflect different accumulated losses are inserted into the tree, and the contract

values under different accumulated losses are evaluated by standard backward induction, as described

in Wang and Dai (2018).

3.1.2 Construction of TTMJ

The values of contingent equity and claimholders, such as the equity value, debt value, tax benefit,

etc., can be evaluated by applying backward induction with inserted states, as proposed in Liu et al.

(2022), on a carefully designed TTMJ, as illustrated in Figure 3. Borrowing the forest concept proposed

in Liu et al. (2016), our two-time step TTMJ is composed of lower and upper trees for simulating the

firm value processes before and after exercising contingent equity facilities, respectively. In addition,
19Unlike Wang and Dai (2018), we model the loss magnitude by a zeta distribution, as described in Equation (1).
20The jump size h in this paper is set to m× 10 billion, as stated in Section 2.
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Figure 2: Tree with States for Recognizing Value Accumulations. We illustrate the tree structure for
pricing a contingent equity facility proposed in Figure 2 of Wang and Dai (2018). Each time step is decomposed
into a diffusion phase and a jump phase to model the jump-diffusion stock price, as described in Equations (1)–
(4) of Wang and Dai (2018). Gray circles discretely model the log-normal jump magnitudes defined as a basic
loss unit h times an integer. Each red integer i beside a node reflects an inserted state (of that node) representing
the scenario in which the accumulated jump is ih. The blue curves denote two different asset value paths with
accumulated jumps −h and −2h, respectively.

the insurer defaults when its asset value falls below the default boundary (the red dashed curves)

defined in Equation (3) for the first time. To avoid unstable pricing results due to the nonlinearity

error problem defined in Figlewski and Gao (1999), we follow Liu et al. (2016) by making gray nodes

coincide with the default boundary.21 Next, the nodes positioned above the gray nodes are equidistant

and situated22 in accordance with Cox et al. (1979)’s tree structure.

To model the log-normal diffusion and the occasional catastrophe loss components of the firm value,
21This is analog to placing nodes I (J and K) that coincide with the default boundary ΘT1 (ΘT2), as illustrated in

Figure 1.
22This setting is similar to the white nodes on the mesh as depicted by the grids in Figure 2.
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as stated in Equation (2), we mimic Wang and Dai (2018)’s design by decomposing a time step into

diffusion and jump phases and using different branch structures to simulate diffusion and jumps, as

illustrated in Figure 2. In Figure 3, the trinomial structure during the diffusion phase—for instance,

the outgoing branches from node V0 to A1, B1, and C1, from a1,1 to B2, C2, and D2, or from a′′1,ℓ to

B′
2, C ′

2, and D′
2—is constructed by the method proposed in Appendix A of Dai et al. (2010).23 The

branches and corresponding probabilities during the jump phase, such as the outgoing branches from

A1 to A1,0, A1,1, . . ., A1,ℓ that reflect 1, 2, . . . ℓ units of catastrophe losses, respectively, are determined

in Section 2.1. The drop in firm value (1− τ)cD∆t due to coupon payments is simulated by inserting

an after-coupon firm value node (e.g., the purple node a1,1) right after the before-coupon node (e.g.,

the node A1,1). The trinomial branches from purple nodes, such as the branches from a1,1 to B2, C2,

and D2, are constructed by Dai et al. (2010)’s method.

Note that contingent equity facilities are exercised when the accumulated losses reach L (or ℓ unit

losses) and the post-exercise stock price is less than the strike price K, as stated in Equation (6).

These exercises result in fund injections to the firm value and changes in the firm’s capital structure

reflected in red or cyan branches for modeling the transition from the lower tree to the upper one.24 To

model the changes in accumulated losses, we follow Wang and Dai (2018) by inserting states into each

node (e.g., the red integers in Figure 2) to reflect corresponding accumulated losses. For simplicity, in

Figure 3, we only list the states ℓ (ℓ and ℓ − 1) right behind the node a1,ℓ (c2,ℓ−1) and explain how

to calculate accumulated losses. In node a1,L, the loss at time step 1 and hence the accumulated loss

reaches ℓ units, so the option can be exercised (reflected by the red branch jumping to a′′1,ℓ) when the

prevailing stock price St is lower than K. The corresponding changes in the capital structure and

claimholders’ values are analyzed in Section 2.4. In node c2,ℓ−1, the accumulated losses depend on

the evolution path and determine whether the option can or cannot be exercised. Taking the cyan

path as an example, the loss at time step 1 (2) is 1 (ℓ − 1) unit, and the accumulated loss at node

c2,ℓ−1 is 1 + (ℓ− 1) = ℓ units. The outgoing transition branch to the upper tree reflects the fact that

the option can be exercised given the post-exercise stock price is lower than K. The green evolution

path, in turn, denotes that the loss at time step 1 is 0 units, and thus the accumulated loss in c2,ℓ−1 is

0 + (ℓ− 1) = ℓ− 1 units. The outgoing branches connect to the states in the lower tree to reflect the

fact that the option cannot be exercised. Note that applying backward induction for different successor

states yields different contingent claim values that reflect the impact of different accumulated losses.
23Their mean-tracking method constructs feasible trinomial branches from a node to three selected adjacent nodes in

the next time step given the layout of nodes following Cox et al. (1979)’s tree structure.
24This is analog to the tree transition for modeling financing callable bond redemption with firm value, as illustrated

in Figure 1.
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Figure 3: A Two-Time-Step TTMJ. A TTMJ comprises the upper- and the lower-layer trees that model the
evolution of the asset value process after and before exercising contingent equity facilities, respectively. Each
time step can be decomposed into diffusion and jump phases, as illustrated in the upper corner. Red-dashed
curves denote the default boundaries Bt. Nodes denoted by the capital letter and the lowercase one represent
the asset values before and after paying coupons, respectively. The first and the second subscripts for each node
symbol represent the time step and the units of loss at that time step, respectively.

3.2 Minimum/Maximum Acceptable Prices

The valuation of a complex contingent capital, such as a contingent equity facility in our scenario,

involves an endogenous problem because the contract value depends on the insurer’s stock price, which

in turn is influenced by the purchase price and the post-purchase firm value. This endogeneity is

also noted by Lo et al. (2013), Sundaresan and Wang (2015), and Glasserman and Nouri (2016). In

this section, we develop an iterative valuation method that repeatedly applies our TTMJ to address
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this endogeneity, and we analyze the minimum required price and the maximum acceptable price of a

CatEPut from the seller’s and the buyer’s perspectives in Sections 3.2.1 and 3.2.2, respectively.

3.2.1 Seller’s Perspective

As a seller of contingent equity, the willingness to bear catastrophe risk depends on whether the

deal price (Deal) is higher than its issuing cost (IC). Without sacrificing the sellers’ benefits, the seller

requires a price above or equal to the IC to replicate the potential compensation payments minus

the value of the obtained stock shares. Note that the IC can be valued as the expected discounted

payoffs of the contingent equity under the risk-neutral measure as introduced in Section 3.1 as

ICt = e−rt#EQ
t

[
Nnew × (K − S′

t#
)
]
.

However, once the insurer purchases the contingent equity at the deal price, the cash outlay for

the contract decreases the insurer’s asset value (from V0 to V0 − Deal), making the expected share

price less valuable. As a result, the seller demands a higher premium, which in turn leads to another

decrease in the expected share price. Lo et al. (2013) points out that this endogenous problem can

have a significant impact on the valuation of contingent capital, especially when the number of new

shares available for issuance, Nnew, is high. To solve this endogenous problem between IC and Deal,

we repeatedly calculate the IC by tuning the after-purchase firm value (i.e., V0 − Deal) until the two

values converge and the relative error is less than 10−8.

Figure 4 shows the flowchart used to value the contingent equity from the seller’s perspective. First,

given the model parameters, we calculate IC without considering the endogenous problem. Then, we

set Deal to the IC and update the firm value of the insurer to be V0 − Deal to recalculate the IC. This

step is repeated until the IC converges to Deal. The resulting equilibrium price is the minimum price

required by the seller to sell the contingent equity; for simplicity, we term this the ask price.

3.2.2 Buyer’s Perspective

As a buyer of contingent equity, the willingness to pay the purchase price Deal depends on the

potential benefit of receiving emergency capital injections. To weigh the pros and cons of purchasing a

contingent equity facility, we analyze the benefits from the perspective of a firm value maximizer and

an equity value maximizer, respectively. If a contract purchase decreases the insurer’s firm value (or

equity value), the insurer has no incentive to purchase it. Therefore, the maximum price acceptable to

the buyer, or the bid price, is the highest price that does not reduce the firm-levered value (or equity

value).

Define the pre-purchase firm-levered value as V L
0 ≡ E0 + D0, and the post-purchase firm-levered

value as V ′L
0 ≡ E′

0 +D′
0. The equity value E0 and debt value D0 prior to the purchase of contingent

equity are defined in (4) and (3), and can be calculated by applying backward induction on the TTMJ

with firm value V0. Likewise, the corresponding post-purchase values E′
0 and D′

0 are calculated with
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Figure 4: Valuation from Seller’s Perspective

the firm value V0 − Deal. Finally, the valuation of the bid price is equivalent to finding a Deal that

makes V ′L
0 = V L

0 (or E′
0 = E0).

The existence of the bid price can be proved by the intermediate value theorem. For the firm value

maximizer, it is obvious that V ′L
0 > V L

0 when Deal = 0, since the contingent equity provides the buyer

with the possibility of receiving cash inflow without incurring any costs. However, V ′L
0 < V L

0 when

Deal = V0, because the cash outlay for the contract reduces the buyer’s asset value to hit the default

boundary. Therefore, there must be a Deal in the interval (0, V0) that meets the condition V ′L
0 = V L

0 .

Similar arguments can be applied to the equity value maximizer, except that the loss of equity value

due to dilution of new shares from the exercise of contingent equity may outweigh the benefits of fund

injections. Under very extreme scenarios, E′
0 might be smaller than E0 even when Deal = 0 and the

bid price is a negative number.

Figure 5 shows the flowchart used to value the contingent equity from the buyer’s perspective. First,

given the model parameters, we set the initial purchase price Deal equal to the ask price determined

in Section 3.2.1. Next, we determine that the objective function is a firm value maximizer or an

equity value maximizer. We calculate V ′L
0 and E′

0 to examine how the contract purchase changes the

insurer’s firm-levered value or equity value. Similar to the valuation of ask prices, evaluating bid prices

also leads to price endogeneity. Increasing Deal reduces the after-purchase firm value V0 − Deal and

hence decreases V ′L
0 (or E′

0), which influences the pricing result to meet the termination condition

V ′L
0 ≈ V L

0 (or E′
0 ≈ E0). Thus, we repeatedly adjust the deal price Deal with digit-by-digit calculation

to evaluate the firm’s levered value (or the equity value) with our TTMJ until the termination condition

is met.
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Figure 5: Valuation from Buyer’s Perspective

After deriving the ask and bid price for a contingent equity facility, as in Figures 4 and 5, respec-

tively, we determine whether the contract can be dealt with after negotiations. Since the seller (buyer)

does not accept a deal price that is lower (higher) than the ask (bid) price, contingent equity can be

traded only when the bid price is higher than the ask price (or the feasible trading region exists). This

property can be used to analyze whether a contingent equity facility is tradable by comparing various

provisions mentioned in the relevant literature or real-world contracts in our subsequent analysis.

3.3 Revised Trade-off Theory

Trade-off theory (see Kraus and Litzenberger, 1973) analyzes how the levered value of a firm, such

as an insurer in our analysis, is affected by its leverage ratio (or total liabilities). Specifically, the

levered firm value (V L
t ) at time t, defined as the sum of values of claimholders like shareholders (Et)

and debtholders (Dt), can be expressed as a function of the leverage ratio η ≡ D/V0 and decomposed

into the firm’s asset value Vt modeled in Equation (2) plus the tax benefits TBt minus the bankruptcy

costs BCt:

V L
t (η) ≡ Et(η) +Dt(η) = Vt + TBt(η)− BCt(η). (7)

However, Lakdawalla and Zanjani (2012) indicate that the insured amount might exceed the insurer’s

assets, a situation that traditional trade-off theory fails to account for and cannot explain. This

implies that catastrophe losses (the rightmost term in Equation (2)) could exceed the firm’s prevailing

asset value and cause Vt+∆t to be negative.25 This scenario implies that either the insured does not

receive full compensation or that other institutions, such as insurance guarantee funds, should cover
25That might be why the government may enact insurance guarantee funds to compensate policyholders for losses

caused by insurance company insolvencies, as stated in Cummins (1988).
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the shortfall. To revise the problem, we incorporate loss compensation (LC) to reflect the present value

of the insured loss or shortfall as

V L
t (η) ≡ Et(η) +Dt(η) = Vt + TBt(η)− BCt(η) + LCt(η). (8)

Note that if the catastrophe loss is always less than the asset value, then the LC is zero.

Next, we explore the impact of the purchase of contingent equity on our revised trade-off theory.

Insurers pay the purchase price Deal (financed by the insurer’s asset) to obtain potential emergency

capital injections, but this action also leads to equity dilutions. To evaluate the rationale behind the

contract purchase, we assess the changes in the firm-levered value (∆V L
t ), the equity value (∆Et), and

the debt value (∆Dt) due to the purchase, respectively. Following the revised trade-off theory (8), we

analyze the impact of contract purchases as

∆V L
t (η) ≡ ∆Et(η) + ∆Dt(η) = ∆Vt(η) + ∆TBt(η)−∆BCt(η) + ∆LCt(η), (9)

where ∆Vt(η), ∆TBt, ∆BCt, and ∆LCt represent the changes in firm asset value, tax benefit, bankruptcy

cost, and loss compensation resulting from the purchase of the contingent equity, respectively. Note

that the change in the firm asset value is dependent on η, which indicates the discrepancy between the

price paid by the buyer (Deal) and the value of the potential capital injection received by the buyer

(ICt). That is, ∆Vt(η) = ICt(η)−Deal(η). When the purchase price Deal precisely matches the seller’s

minimum required price ICt, the firm asset value does not change due to the purchase. However, if

Deal is set higher through negotiation between the contract buyer and seller, increasing Deal decreases

the firm asset value and negatively impacts the overall firm-levered value. Detailed discussions of the

changes in claimholders’ values are given in Section 4.4.

4 Quantitative Analyses

This section quantitatively analyzes the tradability of various types of contingent equity facilities

and the benefits for insurers. Section 4.1 describes how we determine the base case by retrieving

parameters from real-world data such as U.S. catastrophe loss data, RLI financial reports, and the

CatEPut contract signed by RLI. Section 4.2 calculates the minimum acceptable price from the

seller’s perspective, or the ask price, by the method proposed in Section 3.2.1. Section 4.3 first

calculates the maximum acceptable price from the buyer’s perspective, or the bid price, by the method

proposed in Section 3.2.2, and then explores the feasible trading region to find the “tradeable” contract

design. Section 4.4 analyzes the change in the firm-levered value ∆V L
t and equity value ∆Et due

to the purchase of different types of CatEPuts to find the appropriate contract provisions for insurers.

Finally, we examine the robustness of our model and analyses in Section 4.5.
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4.1 Parameter Settings

The first CatEPut contract was signed between RLI Corp and Centre Re in October 1996,26 giving

RLI the right to sell up to 50 million shares to Centre Re right after the event in which the losses

of California earthquakes depleted its reinsurance program, provided RLI could continue to operate

after capital injections. To reproduce the transaction scenario at that time and analyze the decisions

for both parties, we extracted the financial status of RLI and the CatEPut provisions mainly from the

RLI’s 10-K reports27 to determine model parameters.

To estimate the catastrophe parameters, we downloaded the total damages caused by earthquakes

in the United States from 1902 to 2022 from the EM-DAT database. Figure 6 shows the annual counts

of earthquakes recorded in the EM-DAT database. The results show a maximum of three observations

per year, which is consistent with the principle that catastrophes are rare events with no clear trend

or pattern. With this in mind, our empirical estimates exclude earlier data and select a sample period

from 1950 to 1995. Figure 7 shows the distribution of total damages incurred from the 28 earthquakes

during the sample period. This distribution aligns with the zeta distribution and supports our model

assumption.
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Figure 6: Annual Counts of Earthquakes in the U.S.
The sample period, spanning from 1902 to 2022, was obtained from the EM-DAT database.

Table 1 summarizes the parameters into four categories, the first of which describes the parameters

associated with catastrophes. We calibrate the intensity parameter λ by fitting a Poisson proces to

the annual observations of earthquakes and calibrate the magnitude of catastrophe losses by fitting

Equation (1) to the total damages of each earthquake in our sample. We employ the maximum log-

likelihood method and obtain an estimated jump intensity λ of 0.61 and an estimated shape parameter

s of 1.09. Both parameters are assumed to be the same under both physical and risk-neutral measures,

which implies that catastrophe risks are not diversifiable, as suggested by Merton (1976) and Jaimungal
26We denote the contract effective date as time 0 in latter discussions.
27https://investors.rlicorp.com/sec-filings/default.aspx
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Figure 7: Distribution of Earthquake Losses in the U.S.
The sample period spans from 1950 to 1995 and was obtained from the EM-DAT database.

and Wang (2006).

The second category of parameters in Table 1 describes the financial status and capital structure

of RLI. The initial value of the firm assets (V0 = $905, 764, 000), used in Equation (2) to simulate the

evolution of firm value, is estimated as the total liabilities plus the market value of equity, following

the approach outlined in Eom et al. (2004). The volatility of asset value (σ = 5%) follows the setting

in Duan and Yu (2005), Lo et al. (2013), and Himmelberg and Tsyplakov (2020). The total liabilities

(D = $645, 400, 000), the number of shares outstanding (N = 7, 800, 000), and the effective tax

rate (τ = 27.1%) are retrieved from 10-K reports. Thus, the leverage ratio of RLI, η ≡ D/V0, is

approximately 71%. To cover the CatEPut price discussion for companies with different leverage ratios,

we will fix the asset value V0 and use multiple leverage parameters η ∈ {0.1, 0.2, . . . , 0.9} to perform

the analysis. The coupon rate (c = 6%) is estimated as the average rate of RLI’s total liabilities

extracted from the Mergent FISD database. The market share (m = 0.18%) of RLI is retrieved from

the California Department of Insurance.28

The third category in Table 1 focuses on the parameters associated with the CatEPut contract

extracted from the 10-K report. RLI’s CatEPut is a three-year option (T = 3) that allows the insurer

to issue 50, 000 new shares (i.e., Nnew = 50, 000) if its post-exercise stock price is lower than 1000

(i.e., K = 1000) and the accumulated catastrophe losses are higher than $216 million (i.e., L =

$216, 000, 000). Note that the market price of RLI shares was only 33.38 at the time, significantly

lower than the strike price. This implies that the contract could almost be considered a single trigger

contract driven by catastrophe losses. Since contingent capital is widely discussed in the literature as

featuring a dual-trigger mechanism (Lo et al., 2013; Sundaresan and Wang, 2015), we further consider

a hypothetical at-the-money scenario in subsequent analyses to ensure that our conclusions are not

affected. Likewise, the catastrophe trigger level of this contract is about 24% of RLI’s asset value,
28http://www.insurance.ca.gov/01-consumers/120-company/04-mrktshare/
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Table 1: Parameters for Pricing RLI’s CatEPut

Category Symbol Definition Value

Catastrophe parameters λ Intensity of Poisson process 0.61
s Shape parameter of Zeta distribution 1.09

RLI Corp parameters

V0 Insurer’s assets value at time 0 905, 764, 000
σ Volatility of insurer’s asset (%) 5
D Total liabilities 645, 400, 000
N Shares outstanding 7, 800, 000
τ Effective tax rate (%) 27.1
c Insurer’s coupon rate (%) 6
m Insurer’s market share (%) 0.18

CatEPut parameters

T Time to maturity (years) 3
Nnew New shares issued after exercising CatEPut 50, 000
K Strike price 1,000
L Trigger level of catastrophe losses 216, 000, 000

Environmental parameters α Liquidation cost (%) 40
r Risk-free rate (%) 5

and our analysis will be performed by setting L/V0 ∈ {0.1, . . . , 0.5} to explore the potential differences

caused by the catastrophe trigger condition.

Finally, the last category in Table 1 includes other environmental parameters. The liquidation

cost α is set to 40%, aligning with the range of 10% to 50% commonly used in the literature, including

work by Sundaresan and Wang (2015) and Chen et al. (2017). The risk-free rate r is set to 5% as in

Cox et al. (2004) and Himmelberg and Tsyplakov (2020).

4.2 CatEPut Ask Price

Here, we delve into the valuation of CatEPut, taking into consideration various contract provisions,

corporate leverage characteristics, and catastrophe trigger thresholds. Our analysis begins by calcu-

lating the ask price of a European-style CatEPut, with a specific focus on the absence of the net-worth

provision, as this is a commonly discussed standard contract in the literature (Cox et al., 2004; Jaimun-

gal and Wang, 2006). To further enhance our understanding, we extend our investigation to explore

the impact of an early exercise provision in Section 4.2.1 and a net-worth provision in Section 4.2.2.

To ensure the applicability of our findings beyond specific cases like RLI, which involve extremely deep

in-of-the-money options, we replicate our analyses in Section 4.2.3 for hypothetical contracts with a

strike price equal to the stock price right before CatEPut issuance. By conducting these comprehensive

analyses, we seek to explore the rationality of the provision design, providing important considerations

for market participants in this domain.
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4.2.1 Early Exercise Provision

In Panel A of Table 2, we evaluate the ask price of a European-style CatEPut without the net-

worth provision under various ratios of catastrophe loss trigger levels to the initial firm value (L/V0),

presented in the first column, and the leverage ratio (η), indicated in the first row. To account for the

impact of the leverage ratio on equity value, we list the corresponding stock price before the issuance

of CatEPut (S0) in the second row. We highlight in red the ask prices for four scenarios that sandwich

the RLI case stated in Table 1, where a leverage ratio is 71% and a trigger level of catastrophe losses

is set at 24% of the asset value.

First, we sketch the pattern of the ask price of CatEPut contracts. It decreases as the trigger level

of catastrophe losses (L) increases. This decline is consistent with theoretical expectations due to the

diminishing likelihood of exercising the CatEPut. However, the ask price does not follow a monotonic

pattern with respect to the leverage ratio (η). Take L/V0 = 0.2 as an example: the theoretical price

rises with η initially, then decreases, with the maximum price at η = 0.7. Typically, increases in the

leverage ratio lead to a higher intrinsic value of the CatEPut contract. However, high-leverage firms

are associated with a higher probability of default compared to low-leverage firms, posing a higher

likelihood that the firm defaults prior to its loss reaching the trigger level L. Since this increasing

likelihood decreases the chance to exercise CatEPuts, the ask price of CatEPut contracts may decrease

as the leverage ratio rises, particularly in scenarios with high leverage levels. Notably, most previous

studies (Cox et al., 2004; Jaimungal and Wang, 2006; Lo et al., 2013) do not consider the potential

impact of the buyer’s bankruptcy within the valuation of CatEPut, limiting their ability to establish a

comprehensive understanding beyond the monotonic relationship with the stock price.

In terms of the magnitude of CatEPut prices, the ask price for the RLI case falls within the range of

$4,362,869 and $12,472,690, representing approximately 0.48% to 1.38% of the asset value, respectively.

Taking a broader view across Table 2, the highest ask price reaches $20,874,974, equivalent to 2.31% of

the asset value. The costs of these contracts demonstrate significant affordability, aligning harmoniously

with the essence of insurance contracts and supporting the validity of the pricing mechanism.

Next, we proceed to calculate the ask prices of American-style CatEPut contracts and present the

corresponding early exercise premium in Panel B of Table 2. The early exercise premium is defined

as the incremental change relative to the corresponding European-style contracts. Note that the early

exercise premium is not necessarily positive. Following the assumption made by Lo et al. (2013), we

consider that the buyer exercises the contract immediately when the dual-trigger conditions are met

to obtain emergency capital injection. This buyer’s early exercise policy acts as a barrier option and

may not be the optimal exercise decision (i.e., the exercise value might be lower than the continuation

value to keep CatEPut unexercised). Consequently, the early exercise premium may be theoretically

negative.
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Table 2: Ask Prices of European-style and American-style CatEPuts
This table shows the ask price under various catastrophe trigger levels (L) and leverage ratios (η). S0 is the
stock price before the issuance of CatEPuts. Panel A shows the price for a European-style contract without the
net-worth provision, and Panel B illustrates the early exercise premium, defined as the incremental change in
American-style contracts relative to their European-style counterparts. The four scenarios that sandwich the
RLI case stated in Table 1 are highlighted in red.

L/V0

η 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

S0 104.72 93.31 81.91 70.51 59.14 47.83 36.68 25.79 15.73
Panel A: Ask Price of European-Style CatEPut

0.1 18,922,247 19,203,061 19,483,851 19,764,550 20,045,124 20,324,975 20,604,487 20,874,974 19,767,626
0.2 11,466,222 11,634,615 11,802,986 11,971,276 12,139,446 12,307,006 12,472,690 12,213,739 9,347,854
0.3 5,773,637 5,857,404 5,941,152 6,024,824 6,108,381 6,191,175 6,100,079 4,362,869 2,121,184
0.4 2,720,982 2,759,965 2,798,928 2,837,819 2,876,581 2,895,295 2,492,673 1,317,619 376,741
0.5 1,221,113 1,238,393 1,255,653 1,272,841 1,285,138 1,156,490 759,736 266,080 45,795

Panel B: Early Exercise Premium
0.1 8.98% 8.85% 8.72% 8.59% 8.47% 8.34% 8.18% 7.98% 7.58%
0.2 7.77% 7.65% 7.54% 7.44% 7.32% 7.20% 7.05% 6.75% 6.87%
0.3 5.91% 5.83% 5.74% 5.66% 5.57% 5.45% 5.23% 4.76% 4.64%
0.4 5.12% 5.04% 4.97% 4.89% 4.80% 4.65% 4.49% 4.16% 3.47%
0.5 4.47% 4.40% 4.33% 4.25% 4.13% 3.95% 3.94% 3.34% 2.44%

Our findings show that the early exercise premium for CatEPut contracts ranges from 2.44% to

8.98%. Specifically, for the RLI example, the early exercise premium falls within the range of 4.76% and

7.05% (highlighted in red). The early exercise premium consistently increases with decrements in the

trigger level of catastrophe losses, since the likelihood of CatEPut holders exercising their contracts early

compared to a standard European-style option is also increased. These findings highlight the critical

role of the early exercise provision in the valuation of CatEPut contracts under various catastrophe

risk and leverage scenarios.

4.2.2 Net-Worth Provision

To prevent option sellers from injecting funds into financially unviable companies, RLI’s CatEPut

contract incorporates a net-worth provision. This provision prohibits the exercise of the CatEPut if

the firm’s value falls below a pre-agreed level, such as insolvency. Similar provisions can be found in

other CatEPut contracts, including Horace Mann in 1997, LaSalle Re in 1997, and Trenwick in 2001.

Although this provision is mentioned in Doherty (1997), we have not found similar provisions discussed

extensively in more recent literature. Therefore, we will analyze how the presence of this provision

affects the tradability of CatEPut contracts.

Table 3 provides the results analyzing the impact of the net-worth provision on CatEPut contracts.

This impact is quantified by calculating the ratio of the ask price with the net-worth provision to

that without the provision. A crucial distinction between the two prices arises when the contract is

triggered but the buyer goes bankrupt. In such cases, the contract with the net-worth provision becomes

worthless, whereas that without the provision still provides the predetermined funding. Consequently,

the introduction of the net-worth provision leads to a decrease in the ask price. Panels A and B of
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Table 3 illustrate the impact of this provision for European-style and American-style CatEPut contracts,

respectively, offering quantitative insight into how the net-worth provision affects the pricing of CatEPut

contracts under different exercise provisions.

The impairment of the net-worth provision follows a monotonically increasing pattern for both the

catastrophe trigger level and the firm leverage ratio. For firms with low leverage and low probabilities of

bankruptcy, the net-worth provision has minimal influence as the difference between contracts with and

without the provision is negligible. However, for scenarios involving both high levels of the catastrophe

trigger and firm leverage, the net-worth provision can render the CatEPut contract nearly worthless

due to the elevated probability of bankruptcy and the difficulty in satisfying the trigger condition.

Table 3: Impact of Net-Worth Provision
This table shows the impact of the net-worth provision under various catastrophe trigger levels (L) and leverage
ratios (η). This impact is quantified by calculating the ratio of the ask price with the net-worth provision to
the price without the provision. Panels A and B show the impact for the value changes of European-style and
American-style contracts, respectively. The four scenarios that sandwich the RLI case stated in Table 1 are
highlighted in red.

L/V0

η 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Panel A: European-Style CatEPut
0.1 99.97% 99.92% 99.73% 99.18% 97.60% 93.55% 83.82% 62.91% 35.23%
0.2 99.96% 99.87% 99.59% 98.76% 96.37% 90.19% 75.39% 45.94% 20.17%
0.3 99.93% 99.77% 99.25% 97.70% 93.27% 81.70% 57.23% 30.42% 11.92%
0.4 99.86% 99.53% 98.46% 95.30% 86.23% 63.46% 31.95% 12.12% 4.08%
0.5 99.69% 98.97% 96.64% 89.72% 70.44% 37.87% 12.63% 3.54% 1.03%

Panel B: American-Style CatEPut
0.1 100.00% 100.00% 100.00% 100.00% 100.00% 99.96% 97.48% 80.31% 47.53%
0.2 100.00% 100.00% 100.00% 100.00% 99.98% 99.22% 92.03% 60.04% 26.07%
0.3 100.00% 100.00% 100.00% 99.99% 99.18% 92.98% 70.17% 38.12% 14.78%
0.4 100.00% 100.00% 100.00% 99.73% 95.54% 75.36% 39.02% 14.92% 4.86%
0.5 100.00% 100.00% 99.82% 97.18% 81.03% 45.12% 15.24% 4.30% 1.18%

Comparing the results between the two panels, we observe that the net-worth provision exerts

a stronger influence on European-style contracts. In these contracts, early exercise is not allowed,

meaning that if a catastrophic event significantly impacts the insurer and triggers the contract, it cannot

provide an immediate capital infusion to decrease the buyer’s probability of default. Consequently,

the contract may end up being worthless. Conversely, American-style contracts allow for immediate

capital infusion upon the trigger, thereby reducing the buyer’s probability of default. This explains

why the provision has a lower “discount” on the American-style CatEPut, which can be observed in

the higher ratio in each scenario in Panel B than the corresponding ratio in Panel A. In the specific

example of RLI, the presence of the net-worth provision exerts a significant influence on the price of

CatEPut contracts, resulting in substantial discounts ranging from 38.12% to 92.03%. This wide range

is determined by a combination of the CatEPut trigger probability and the probability of bankruptcy,

underscoring the sensitivity of the net-worth provision’s impact in this scenario (with L/V0 ranging
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between 0.2 and 0.3, and η between 0.7 and 0.8).

In conclusion, although the early exercise premium, as discussed in Section 4.2.1, increases the value

of CatEPut contracts, the net-worth provision has the opposite effect, reducing their value. However, in

the RLI example, the impact of the net-worth provision appears to be more significant, overshadowing

the mixed effect of the early exercise provision. This underscores the dominant role of the net-worth

provision in shaping the overall value of CatEPut contracts.

4.2.3 Stock Price Trigger

Contingent capital contracts typically operate with dual triggers. However, RLI’s high strike price

transforms CatEPuts into a single trigger driven solely by catastrophe losses. To gain further insight,

we analyze a hypothetical scenario in which the contracts have a strike price equal to the stock price

prior to the CatEPut purchases. Note that the contracts are slightly out-of-the-money since the after-

purchase stock price tends to be higher due to the endogenous relationship between future potential

capital infusion and post-exercise stock price. These hypothetical contracts are referred to as “near-the-

money contracts” in this study to distinguish them from real contracts. By examining this scenario,

we can better understand the significance of the stock price trigger and its impact on the valuation of

CatEPut contracts.

We analyze the CatEPut prices for near-the-money contracts in Table 4, which consists of three

panels. Panels A and B of Table 4 replicate the analysis performed in Table 2, evaluating ask prices

for European-style CatEPuts and early exercise premiums contributed by the corresponding American-

style contracts, respectively, without the net-worth provision. Likewise, Panel C of Table 4 aligns

with Panel B of Table 3, providing the discount resulting from the net-worth provision for American-

style CatEPut contracts. This examination allows us to analyze the joint effects of the early exercise

provision and the net-worth provision in the valuation.

The CatEPut prices in Panel A of Table 4 are significantly smaller than those in Table 2. Although

the large numbers in Table 2 primarily represent the contracts’ intrinsic values, the values in Table 4

reflect pure time values as the intrinsic values of these contracts are zero. The patterns in both tables

are consistent, showing that the ask price decreases with the catastrophe trigger level L, and it initially

increases with η and then decreases when η is high. However, the reason for the positive relationship

between the ask price and η is different from the previous deep-in-the-money discussion. The previous

analysis attributed the positive relation to the high intrinsic value of scenarios with high η. In contrast,

the near-the-money contracts in Table 4 have no intrinsic value. Therefore, the main reason for the

positive relationship is that a higher leverage ratio results in greater equity volatility, making the

contract more valuable. This effect is particularly pronounced for high-vega options, such as the

near-the-money contracts analyzed in this discussion.

In the RLI example, if the strike price is set to the prevailing stock price, the ask price of the
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Table 4: Ask Prices of Near-the-Money CatEPuts
This table shows the ask price under various catastrophe trigger levels (L) and leverage ratios (η) for the
hypothetical near-the-money contracts, where the strike price K is equal to the stock price before the CatEPut
purchases. Panel A shows the price for a European-style contract without the net-worth provision. Panel B
illustrates the early exercise premium, defined as the incremental change in American-style contracts relative
to their European-style counterparts. Panel C shows the impact of the net-worth provision by calculating the
ratio of the ask price with the net-worth provision to the price without the provision. The four scenarios that
sandwich the RLI case stated in Table 1 are highlighted in red.

L/V0

η 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

K 104.72 93.31 81.91 70.51 59.14 47.83 36.68 25.79 15.73
Panel A: Ask Price of European-Style CatEPut

0.1 143,292 159,325 177,472 196,550 216,010 235,547 251,166 260,015 225,725
0.2 139,719 154,408 170,540 187,097 203,537 218,780 229,010 222,160 131,947
0.3 120,581 130,663 141,095 151,313 160,748 167,667 162,959 98,535 31,900
0.4 87,455 92,712 97,906 102,697 106,460 106,396 82,520 32,979 5,864
0.5 53,293 55,635 57,856 59,659 60,086 50,304 27,183 6,826 719

Panel B: Early Exercise Premium
0.1 55.76% 46.05% 37.06% 28.88% 22.11% 16.07% 11.02% 6.45% 4.70%
0.2 47.54% 39.68% 32.42% 25.98% 20.52% 15.65% 11.57% 8.19% 7.06%
0.3 27.05% 22.63% 18.61% 15.08% 12.01% 9.33% 7.18% 5.59% 4.91%
0.4 16.49% 13.90% 11.57% 9.50% 7.65% 6.12% 5.15% 4.44% 3.57%
0.5 10.71% 9.14% 7.71% 6.41% 5.25% 4.46% 4.14% 3.41% 2.46%

Panel C: Impact of Net-Worth Provision for American-Style CatEPut
0.1 100.00% 100.00% 100.00% 100.00% 100.00% 99.95% 96.77% 68.99% 27.30%
0.2 100.00% 100.00% 100.00% 100.00% 99.97% 98.66% 88.52% 47.89% 14.03%
0.3 100.00% 100.00% 100.00% 99.98% 98.55% 89.29% 61.31% 27.95% 8.68%
0.4 100.00% 100.00% 100.00% 99.55% 93.49% 69.27% 32.30% 11.18% 3.19%
0.5 100.00% 100.00% 99.71% 95.96% 76.63% 39.83% 12.69% 3.41% 0.84%

CatEPut ranges from 98,535 to 229,010 (highlighted in red), representing a mere 0.011% to 0.025%

of the asset value. However, once the contract is triggered, the capital infusion is also small. This

observation highlights the distinctive trading characteristics of contingent capital compared to standard

option contracts. Unlike the demand pressure for out-of-the-money options for hedging or speculating

purposes (Bollen and Whaley, 2004; Jacobs and Li, 2023), the buyers of contingent capital are primarily

focused on the amount of capital injection. This explains why an extremely deep-in-the-money contract

is chosen in the RLI paradigm.

Panel B of Table 4 shows that the early exercise premium for the near-the-money CatEPuts ranges

from 2.46% to 55.76%. The premium is higher compared to the deep in-the-money case (2.44%–8.98%

in Panel B of Table 2) due to the lower price of near-the-money CatEPuts, making them more sensitive to

the European-style counterparts. Similarly, Panel C of Table 4 shows consistent findings, with the net-

worth provision having a more significant impact on near-the-money contracts than deep-in-the-money

ones. For instance, in the RLI example, the early exercise premium falls within the range of 5.59%–

11.57% (compared to 4.76%–7.05%), whereas the discount contributed by the provision ranges from

27.95% to 88.52% (compared to 38.12%–92.03% in Panel B of Table 3). The disparity becomes more

pronounced for high-leverage and low catastrophe trigger scenarios, for instance, 27.30% compared to
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47.53% in the scenario with L/V0 = 0.1 and η = 0.9. This analysis reveals an unexplored aspect in

the literature, as the valuation of near-the-money contracts differs significantly from that of extremely

deep-in-the-money contracts, which has not been thoroughly discussed before.

4.3 Bid Prices and Feasible Trading Regions

Here, we first calculate the bid prices for all scenarios discussed in Section 4.2. The bid price

is defined as the maximum price that decreases neither the firm value nor the equity value. Thus,

we analyze the bid price from two perspectives: the firm value maximizers in Section 4.3.1 and the

equity value maximizers in Section 4.3.2. To emphasize the bid price analysis from both the firm and

equity value angles, this analysis centers on two contract types: (i) European-style CatEPuts without

the net-worth provision, a fundamental contract widely studied in the literature; and (ii) American-

style CatEPuts with the net-worth provision, reflecting its application in real-world RLI contracts. We

reasonably assume that rational CatEPut sellers and buyers avoid detrimental trades. As a result,

the deal price must be set lower than the bid price and higher than the ask price to ensure beneficial

trades. In Section 4.3.3, we consolidate our findings, summarizing the presence or absence of the

feasible trading region, represented by the closed interval [ask price, bid price], across various contract

conditions and provisions.

4.3.1 Perspectives of Firm Value Maximizers

In this analysis, we calculate the bid price from the perspective of a buyer seeking to maximize

the firm value. Since the bid price pattern closely resembles the ask price from the previous section,

we present the bid-to-ask price ratio in Table 5. A ratio higher than 100% indicates the presence of

a feasible trading region, while a ratio lower than 100% indicates its absence. Panel A displays the

results for European-style CatEPuts without the net-worth provision, and Panel B shows outcomes for

American-style CatEPuts with the net-worth provision. By examining these ratios, we can analyze the

circumstances under which CatEPut contracts are more likely to form trading regions.

The bid-to-ask price ratios in Panel A of Table 5 are consistently lower than 100%, whereas those

in Panel B are nearly all higher than 100%. These findings emphasize the critical role of contract

provisions in forming the trading region. Our untabulated results reveal that even after incorporating

the net-worth provision into the European-style contract, the ratios remain below 100%. This find-

ing suggests that the early exercise provision has a dominant impact on the tradability of CatEPut

contracts.

The particularly low bid-to-ask price ratios for European-style contracts occur when both the

leverage ratio and catastrophe trigger level are high. In such cases, the buyer faces a higher risk of

insolvency that could invalidate its unexercised CatEPuts. Conversely, the early exercise provision

present in American-style contracts offers buyers the opportunity to receive a capital infusion upon
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Table 5: Bid-to-Ask Price Ratio of CatEPuts for Firm Value Maximizers
This table shows the bid-to-ask price ratio under various catastrophe trigger levels (L) and leverage ratios (η),
where the buyer seeks to maximize the firm value. Panel A displays the results for European-style contracts
without the net-worth provision, and Panel B shows outcomes for American-style contracts with the net-worth
provision. The four scenarios that sandwich the RLI case stated in Table 1 are highlighted in red.

L/V0

η 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Panel A: European-Style CatEPut without Net-Worth Provision
0.1 99.988% 99.950% 99.798% 99.264% 97.488% 92.874% 81.282% 63.365% 44.743%
0.2 99.982% 99.936% 99.758% 99.145% 97.151% 91.962% 79.513% 59.924% 42.426%
0.3 99.968% 99.899% 99.646% 98.804% 96.169% 89.340% 75.315% 58.405% 42.110%
0.4 99.936% 99.813% 99.386% 98.004% 93.844% 83.552% 69.519% 53.987% 40.190%
0.5 99.861% 99.613% 98.776% 96.129% 88.607% 76.153% 64.567% 49.778% 37.963%

Panel B: American-Style CatEPut with Net-Worth Provision
0.1 100.001% 100.020% 100.111% 100.453% 101.681% 104.956% 107.903% 109.972% 109.251%
0.2 100.002% 100.042% 100.228% 100.939% 103.457% 109.108% 115.722% 120.057% 112.436%
0.3 100.005% 100.094% 100.517% 102.113% 106.399% 114.328% 122.638% 121.342% 110.390%
0.4 100.012% 100.211% 101.162% 104.340% 110.806% 123.267% 131.452% 127.517% 106.046%
0.5 100.028% 100.482% 102.417% 107.191% 116.105% 129.943% 138.512% 131.308% 98.463%

contract trigger, subsequently boosting the firm’s value. This enhancement in value increases the

buyer’s willingness to pay for the CatEPut, contributing to higher bid-to-ask price ratios.

An interesting phenomenon occurs when both the leverage ratio and catastrophe trigger level are

low: the bid-to-ask price ratios in both panels are quite close to 100%. This suggests that market

participants may share common expectations about contract prices. However, the narrowness of this

trading region may limit bargaining flexibility, making it challenging to successfully trade the contract

under these specific conditions. For the RLI example, the bid prices in Panel B of Table 5 are consis-

tently at least 15% higher than the corresponding ask prices. This notable difference strongly suggests

the existence of a trading region, allowing for adequate flexibility in negotiating premiums.

4.3.2 Perspectives of Equity Value Maximizers

Table 6 presents the bid-to-ask price ratio, this time from the viewpoint of a buyer seeking to

maximize the equity value. As with Table 5, a ratio above (below) 100% suggests the existence

(absence) of a feasible trading region. However, there is a key distinction between these two types

of buyers. The capital infusion provided by CatEPuts may partially go to debtholders, which can be

measured from the firm value perspective but not from the equity value perspective. This nuance may

reduce the tradability of CatEPut contracts.

The results presented in Table 6 reveal several noteworthy findings regarding the tradability of

CatEPut contracts from the perspective of buyers seeking to maximize the equity value. First, the bid-

to-ask price ratios in both panels are generally lower than those observed in Table 5 (where the focus

was on firm value maximizers). This pattern aligns with expectations, as mentioned above, where the

capital infusion may partially benefit debtholders but not equity holders. This indicates that CatEPuts

are more challenging to trade successfully when buyers seek to maximize equity value. Additionally,
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Table 6: The Bid-to-Ask Price Ratio of CatEPuts for Equity Value Maximizers
This table shows the bid-to-ask price ratio under various catastrophe trigger levels (L) and leverage ratios (η),
where the buyer aims to maximize the equity value. Panel A displays the results for European-style contracts
without the net-worth provision, and panel B shows outcomes for American-style contracts with the net-worth
provision. The four scenarios that sandwich the RLI case stated in Table 1 are highlighted in red.

L/V0

η 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Panel A: European-style CatEPut without Net-Worth Provision
0.1 99.982% 99.938% 99.799% 99.384% 98.154% 95.016% 86.559% 68.298% 41.959%
0.2 99.969% 99.896% 99.662% 98.963% 96.909% 91.571% 77.936% 50.014% 24.331%
0.3 99.938% 99.791% 99.320% 97.909% 93.799% 82.986% 59.475% 33.736% 14.799%
0.4 99.868% 99.554% 98.547% 95.528% 86.774% 64.629% 33.799% 14.098% 5.404%
0.5 99.705% 99.002% 96.752% 89.996% 71.041% 38.990% 14.002% 4.495% 1.536%

Panel B: American-style CatEPut with Net-Worth Provision
0.1 99.993% 99.978% 99.933% 99.799% 99.461% 98.532% 96.642% 99.539% 110.864%
0.2 99.987% 99.956% 99.862% 99.584% 98.871% 97.039% 94.776% 100.166% 112.350%
0.3 99.970% 99.900% 99.686% 99.049% 97.467% 95.324% 95.302% 100.599% 113.642%
0.4 99.932% 99.775% 99.293% 97.867% 95.166% 94.173% 96.170% 101.435% 114.432%
0.5 99.844% 99.484% 98.384% 95.827% 93.462% 94.616% 97.275% 102.228% 115.074%

similar to Table 5, the bid and ask prices are closely aligned for scenarios with low leverage ratios,

indicating a consensus among market participants.

One of the major findings from Table 6 is its potential to override the conclusions of Table 5.

Specifically, the bid-to-ask price ratios for American-style CatEPuts with net-worth provisions may

become lower than one when buyers seek to maximize equity value instead of firm value. This obser-

vation suggests that the buyer’s objective function significantly influences the existence of the trading

region. These findings support the model setup in this study, the aim of which is to investigate buyers’

decisions from different perspectives.

Moreover, the trading region emerges when the leverage ratio is high (η ≥ 0.8) for the American-

style contract with net-worth provision. This outcome emphasizes the critical value of considering

both the early exercise and net-worth provision in the analysis of tradability. In the case of the RLI

example, the trading regions lie within an ambiguous zone between existence and non-existence, with

the transaction price falling precisely within the acceptable bargaining range for both buyers and

sellers.

4.3.3 Feasible Trading Regions

Table 7 summarizes the existence of feasible trading regions for firm value maximizers (Panel A)

and equity value maximizers (Panel B). We consider the presence or absence of net-worth (NW)

and/or early exercise (EE) provisions, along with varying leverage ratios (η) and catastrophe trigger

levels (L/V0). The · symbol denotes that the difference between the bid and ask prices is within 1%,

signifying a market consensus on the contract price, and the
√

(×) symbol indicates the presence

(absence) of the trading region, with
√

(×) denoting the bid price being higher (lower) than the ask
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price. The number of
√

(×) symbols, up to three, indicates the degree of feasibility of the trading

regions.

Table 7: Summary of Feasible Trading Regions
This table summarizes the presence or absence of the feasible trading region under various provisions, leverage
ratios (η) in the first row, and catastrophe trigger levels (L/V0) in the second row. NW and EE represent the
net-worth and early exercise provisions, respectively, as illustrated in the first and second columns. Panels A
and B show the results for firm value and equity value maximizers, respectively. The · symbol denotes that the
difference between the bid and ask prices is within 1%,

√
(×) indicates the bid price exceeding (falling short

of) the ask price by 1% to 5%,
√√

(××) indicates a difference of 5% to 10%, and
√√√

(× × ×) denotes a
difference of over 10%. The scenarios closely resembling the RLI case in Table 1 are highlighted in red.

Provision Low leverage (η = 0.2) Medium leverage (η = 0.5) High leverage (η = 0.8)
NW EE L/V0 = 0.1 L/V0 = 0.2 L/V0 = 0.3 L/V0 = 0.1 L/V0 = 0.2 L/V0 = 0.3 L/V0 = 0.1 L/V0 = 0.2 L/V0 = 0.3

Panel A: Firm Value Maximizers
No No · · · × × × ××× ××× ×××
No Yes · · ·

√ √ √√ √√√ √√√ √√√

Yes No · · · × × × ××× ××× ×××
Yes Yes · · ·

√ √ √√ √√√ √√√ √√√

Panel B: Equity Value Maximizers
No No · · · × × ×× ××× ××× ×××
No Yes · · · · × × ×× ××× ×××
Yes No · · · · · ·

√√ √√ √√

Yes Yes · · · · × × · · ·

Based on the summary results in Table 7, we propose the following findings.29 First, when the

leverage ratio is low (the “Low leverage” column of the table), there is a consensus among market

participants regardless of the provision settings. However, insurers usually have high leverage, and the

narrowness of this trading region may also limit bargaining flexibility. Second, while a European-style

CatEPut without the net-worth provision (NW: No, EE: No) is widely studied in the literature, the

absence of a feasible trading region persists regardless of changes in leverage ratios, catastrophe trigger

levels, or the buyer’s perspective. This implies that buyers and sellers cannot find a suitable deal price

that simultaneously enhances their benefits, emphasizing the necessity of including provisions in the

valuation of this study.

Third, when considering the high leverage ratio (the “High leverage” column of the table) commonly

faced by common insurers, significant disagreement emerges among market participants. For firm value

maximizers, the bid prices are significantly higher than the ask prices for American-style contracts

because the in-time emergency capital infusion increases the firm value. For equity value maximizers,

involving net-worth provisions is more crucial to make the contract tradable. In particular, the expenses

associated with acquiring these contracts can be minimal due to the presence of low ask prices, as

analyzed in Table 3, resulting in a limited impact on shareholders. Furthermore, buyers receiving

capital injections under this provision must not have experienced bankruptcy, and the infusion of

capital at this juncture is also advantageous for shareholders. In conclusion, our analysis suggests

that an American-style CatEPut with a net-worth provision (NW: Yes, EE: Yes) stands as the optimal

choice for delivering mutual benefits to both equity and debtholders of insurers, as well as the writers of
29These findings remain valid when analyzing the hypothetical near-the-money contracts discussed in Section 4.2.3.
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CatEPut contracts. This is particularly advantageous for high-leverage buyers (η = 0.8) with suitable

catastrophe trigger levels (L/V0 = 0.2 or 0.3), corroborating the real-world CatEPut transaction carried

out by RLI (highlighted in red).

4.4 Changes in Claimholders’ Values

In the preceding subsections, we investigated how provisions affect bid and ask prices. Now, we shift

our focus to how the purchase of CatEPuts influences the values of claimholders. In Section 4.4.1,

we equate the Deal to the ask price, the minimum amount the seller demands. If acquiring CatEPuts

under this premise boosts the insurer’s firm-levered or equity value, it suggests room for potential

price negotiation. In Section 4.4.2, we position the Deal at the midpoint between the bid and ask

prices, reflecting possible negotiation scenarios. For simplicity, we focus on the academically popular

yet seldom-seen European-style CatEPuts without the net-worth provision, and the more commonly

observed American-style CatEPuts with the net-worth provision, to assess the combined impact of both

provisions. We present our results for a representative analysis using the trigger level L/V0 = 0.2 as

analogous patterns are observed for L/V0 = 0.1 and L/V0 = 0.3.

4.4.1 Setting the Deal Price to the Ask Price

Table 8 shows the changes in the claimholders’ values for the two CatEPut variants: basic CatEPuts

without provisions (Panel A) and comprehensive CatEPuts featuring both early exercise and net-worth

provisions (Panel B). The first row of the table indicates the leverage ratio of the insurer, and the first

row of each panel illustrates the corresponding Deal with respect to different provision and leverage

ratio settings. We initially display the alteration in the firm-levered value (∆V L) resulting from the

CatEPut purchase, followed by a breakdown into changes in equity (∆E) and debt (∆D) values. Last,

we examine changes in tax benefits (∆TB), bankruptcy costs (∆BC), and loss compensation (∆LC), as

discussed in Section 3.3.

Table 8 reveals that purchasing basic CatEPuts lacking provisions, as in Panel A, reduces the firm

value (e.g., ∆V L < 0), whereas ∆V L turns positive for purchasing CatEPuts incorporating both early

exercise and net-worth provisions, as in Panel B.30 This observation aligns with the analyses of feasible

trading regions in Section 4.3.3, suggesting that American-style CatEPuts with net-worth provisions

have the potential to improve the firm values and trading opportunities due to the presence of more

favorable trading regions. In contrast, European-style CatEPuts without net-worth provisions do not

offer these advantages.

Subsequently, we break down the change in firm-levered value into its constituent equity and

debt components. In Panel A of Table 8, it becomes evident that the predominant factor driving
30The impacts of the leverage η on the trajectory of ∆V L are intricate. This complexity arises because high-leverage

situations involve lower stock prices, augmented intrinsic value, elevated default risk, and a non-linear relationship with
the deal price.
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Table 8: Changes in Claimholder Values by Setting Deal to Ask Price
This table breaks down the changes in claimholders’ values using our revised trade-off theory in Equation (9)
for two types of CatEPuts: European-style without the net-worth provisions (Panel A) and American-style with
the net-worth provisions (Panel B). The leverage ratios are η ∈ {0.1, 0.2, . . . , 0.9} listed in the first row, and the
ratio of catastrophe loss trigger levels to the initial firm value is L/V0 = 0.2. The deal price Deal is set to the
ask price calculated in Section 4.2.

Leverage (η) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Panel A: European-Style CatEPut without Net-Worth Provision
Deal 11,466,222 11,634,615 11,802,986 11,971,276 12,139,446 12,307,006 12,472,690 12,213,739 9,347,854
∆V L -2,052 -7,456 -28,573 -102,737 -351,951 -1,045,239 -3,022,977 -6,957,184 -9,539,006
Decomposition:
∆E -3,513 -12,048 -39,789 -123,911 -374,301 -1,032,313 -2,749,331 -5,920,161 -6,083,789
∆D 1,461 4,592 11,216 21,174 22,350 -12,926 -273,646 -1,037,023 -3,455,217

Revised trade-off theory:
∆TB -14 -103 -552 -2,419 -10,356 -34,654 -135,895 -355,466 -557,234
∆BC 1,587 7,204 28,021 100,318 341,594 1,010,585 2,887,082 6,601,718 8,981,772
∆LC -451 -148 0 0 0 0 0 0 0

Panel B: American-Style CatEPut with Net-Worth Provision
Deal 12,356,816 12,525,179 12,693,449 12,861,430 13,026,043 13,090,330 12,287,973 7,828,415 2,604,479
∆V L 291 5,192 28,861 120,812 454,365 1,242,511 2,277,838 2,354,750 581,832
Decomposition:
∆E -1,661 -5,532 -17,480 -53,382 -146,321 -384,235 -638,183 12,799 281,283
∆D 1,952 10,724 46,341 174,194 600,687 1,626,747 2,916,021 2,341,951 300,549

Revised trade-off theory:
∆TB 33 240 1,276 5,480 22,749 62,941 105,142 52,403 -62,931
∆BC -528 -5,015 -27,585 -115,333 -431,616 -1,179,571 -2,172,696 -2,302,347 -644,762
∆LC -270 -63 0 0 0 0 0 0 0

the changes in the firm-levered value is ∆E, which remains consistently negative across all leverage

ratios, leading to the overall negative ∆V L. Moreover, the changes in the debt value ∆D are negative

when η ≥ 0.6, further reinforcing the adverse impact on firm value. These findings emphasize the

importance of considering early exercise and net-worth provisions for tradability of CatEPuts under

these circumstances.

In contrast, the American-style CatEPut with a net-worth provision yields contrasting outcomes.

Panel B of Table 8 reveals that ∆D predominantly influences the change in firm-levered value, leading

to a positive impact that strengthens firm value. This finding further explains the presence of the

feasible trading region for firm value maximizers, as discussed in Section 4.3.3. The change in equity

value, ∆E, typically assumes a negative value, except when η ≥ 0.8. These findings align with the

infeasible or insignificant trading region observed for equity value maximizers. Although studies such

as Lo et al. (2013), suggests that CatEPut acquisition can lower the default likelihood for high-risk

insurers, our analyses underscore potential challenges in achieving this outcome. Specifically, the

purchase of improperly designed CatEPuts could adversely affect the firm value or equity value for

high-leverage insurers, emphasizing the pivotal role played by contractual provisions.

Following the revised trade-off theory in Equation (9), we delve deeper into the breakdown of

changes in firm-levered value, specifically focusing on tax benefits, bankruptcy costs, and loss com-

pensation.31 Table 8 shows that the most influential factor affecting the impact of CatEPut purchase
31The impact of changes in loss compensation on firm-levered value is relatively minor; however, it remains essential to
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on firm-levered value is bankruptcy costs. For European-style contracts without net-worth provisions,

∆BC exhibits a positive trend that escalates steeply as the leverage ratio increases, exerting a detri-

mental effect on firm value. Additionally, the change in tax benefit (∆TB) experiences a decline as

the leverage ratio rises. Both of these forces are in accord with the pronounced disagreement in Sec-

tion 4.3.3 (represented by the × × × symbol in Table 7). Conversely, ∆TB exhibits positive values,

with a sole exception (η = 0.9) for purchasing American-style CatEPuts featuring a net-worth provi-

sion. Furthermore, the reduction in bankruptcy costs contributes positively to ∆V L. In essence, the

purchase of CatEPut under this scenario demonstrates its advantageous nature for both debtholders

and equity holders, leading to a mutually beneficial outcome.

4.4.2 Setting the Deal Price to the Mid-Price

An important implication of the revised trade-off theory in Equation (9) is that the deal price Deal

may not align with the ask price or the present value of the potential capital injection received by the

buyer. To consider potential negotiations, we assume the deal price to be the mid-price, the midpoint

between the bid and ask prices. Table 9 presents the changes in claimholders’ values using bid prices

determined by firm value maximizers. Using bid prices determined by equity value maximizers yields

similar results; we ignore the analyses for simplicity.

Under the mid-price assumption, deal prices in Panel A (Panel B) of Table 9 decrease (increase)

compared to Table 8. This change occurs because the bid prices calculated in Table 5 are lower (higher)

than the ask prices, indicating the absence (presence) of the trading region in these contract conditions.

The difference in Deal is more pronounced in high-leverage scenarios due to the disagreement between

buyers and sellers identified in our previous findings. Consequently, the negative value of ∆V L in

Panel A of Table 8 is mitigated in Table 9, whereas the positive value of ∆V L in Panel B of Table 8

is impaired in Table 9.

4.5 Robustness Checks

Here, we provide the robustness checks of our findings to potential concerns. Regarding the early

exercise provision, we follow Lo et al. (2013) to assume that the CatEPut buyers exercise their rights

immediately when the dual-trigger conditions are met to obtain emergency capital injection. Although

this early exercise policy is straightforward and pragmatic, the CatEPut is inherently an American-style

option. To account for this, we additionally examine the optimal exercise decision adopted by Wang

and Dai (2018) using our TTMJ method. However, our results show that granting insurers additional

rights to postpone CatEPut exercises to maximize exercise value does not alter our analyses of provisions

and feasible trading regions.

revise the trade-off theory. The 95% confidence intervals for LC before and after the purchase of CatEPut are (64.5, 121.6)
and (40.6, 77.9), respectively, with both values being statistically significant and positive.
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Table 9: Changes in Claimholder Values by Setting Deal to Mid-Price
This table breaks down the changes in claimholders’ values using our revised trade-off theory in Equation (9)
for two types of CatEPuts: European-style without net-worth provisions (Panel A) and American-style with
net-worth provisions (Panel B). The leverage ratios are η ∈ {0.1, 0.2, . . . , 0.9} listed in the first row, and the
ratio of catastrophe loss trigger levels to the initial firm value is L/V0 = 0.2. The deal price Deal is set to the
midpoint between ask and bid prices calculated in Sections 4.2 and 4.3.1.

Leverage (η) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Panel A: European-Style CatEPut without Net-Worth Provision
Deal 11,465,194 11,630,880 11,788,692 11,920,080 11,966,513 11,812,417 11,195,021 9,766,351 6,656,903
∆V L -1,026 -3,728 -14,286 -51,368 -175,972 -522,551 -1,509,772 -3,471,571 -4,749,473
Decomposition:
∆E -2,487 -8,321 -25,523 -72,829 -201,809 -540,147 -1,472,715 -3,550,960 -3,776,639
∆D 1,461 4,593 11,237 21,461 25,837 17,596 -37,057 79,389 -972,834

Revised trade-off theory:
∆V 1,026 3,727 14,267 51,099 172,608 493,665 1,275,332 2,483,776 2,804,086
∆TB -14 -103 -551 -2,407 -10,197 -33,165 -120,671 -281,903 -391,498
∆BC 1,587 7,203 28,003 100,060 338,383 983,050 2,664,433 5,673,444 7,162,061
∆LC -451 -148 0 0 0 0 0 0 0

Panel B: American-Style CatEPut with Net-Worth Provision
Deal 12,356,962 12,527,780 12,707,898 12,921,787 13,251,180 13,686,464 13,253,952 8,613,480 2,766,424
∆V L 146 2,596 14,430 60,406 227,186 621,352 1,140,204 1,178,219 290,978
Decomposition:
∆E -1,806 -8,128 -31,896 -113,555 -370,324 -975,077 -1,598,745 -761,840 139,650
∆D 1,952 10,724 46,326 173,961 597,510 1,596,430 2,738,948 1,940,058 151,328

Revised trade-off theory:
∆V -146 -2,596 -14,421 -60,244 -224,749 -596,838 -989,047 -841,442 -169,216
∆TB 33 240 1,275 5,473 22,629 61,587 94,993 26,813 -72,702
∆BC -528 -5,014 -27,577 -115,178 -429,306 -1,156,603 -2,034,258 -1,992,848 -532,896
∆LC -270 -63 0 0 0 0 0 0 0

Regarding the catastrophe parameters, we expand our analysis to encompass the sample period

from 1950 to 2001, aligning with the maturity date of the RLI’s CatEPut and alleviating concerns

regarding potential shifts in catastrophe frequency. However, the parameter variations are minimal,

with the estimated λ changing from 0.61 to 0.58, and the estimated s shifting from 1.09 to 1.08.

These subtle parameter adjustments have a negligible impact on CatEPut prices, as well as changes in

firm-levered or equity values.

Last, we explore the impact of different values for the asset volatility parameter on our analysis.

Volatility is a critical factor that significantly influences standard option prices in financial theory. Our

initial assumption is σ = 5%, whereas other studies consider a range of values: Sundaresan and Wang

(2015) and Pennacchi and Tchistyi (2019) use σ = 4%, Himmelberg and Tsyplakov (2020) analyze

up to σ = 7%, Chen et al. (2017) consider σ = 8%, and Hilscher and Raviv (2014) extend their

examination to volatility levels up to 9%. To ensure the robustness of our findings across varying

volatility levels, we depict the relationship between firm value (equity value) and asset volatility within

the range σ ∈ {0.05, 0.06, . . . , 0.15}, as shown in Panel A (Panel B) of Figure 8. In particular, the

solid black curve depicts the values prior to the purchase of CatEPut, and the dashed red (dotted

blue) curve shows the value after purchasing a CatEPut with (without) early-exercise and net-worth

provisions. The advantage of incorporating both provisions is obvious regardless of the change in σ.

The only distinction is that for equity value maximizers, purchasing CatEPuts with the two provisions
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might yield a slightly positive impact on equity values under the condition of elevated asset volatility.

Similar to our previous findings, adopting these two provisions provides the opportunity to enhance

the benefits for all participants when trading CatEPuts.
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Figure 8: Impact of Asset Volatility on Firm Value and Equity Value. The firm and the equity values
before/after purchasing CatEPuts under the asset volatilities listed in the x-axis are illustrated in the left and
the right panels, respectively. All other numerical settings follow the descriptions in Table 1.

5 Conclusion

This study examines the impact of contingent capital provisions on acceptable prices for both

buyers and sellers. Additionally, it investigates their effect on the values of claimholders to assess the

feasibility of early exercise and net-worth provisions. Our model considers catastrophe risk and the

buyer’s default risk, and addresses an endogenous valuation challenge. Using U.S. catastrophe loss

data and a real CatEPut contract acquired by RLI, we quantitatively analyze CatEPut prices from the

perspectives of both buyers and sellers. This analysis leads us to investigate feasible trading regions

and assess the impact of these contract provisions on firm-levered and equity values.

The main findings are summarized as follows. First, as discussed in Section 4.2, the presence of net-

worth provisions significantly lowers the seller’s minimum required price for high-leverage firms, and

early-exercise provisions increase the seller’s required price, especially for low catastrophe trigger levels.

Second, as in Section 4.3, we analyze the maximum acceptable price from the perspective of a buyer

who maximizes either the firm value or the equity value. We compare the prices acceptable to buyers

with those required by sellers, finding that the inclusion of both early exercise and net-worth provisions

can create situations that are simultaneously beneficial to the seller, the insurer’s equity holders, and

the debtholders. Third, we analyze the impact of CatEPut purchase on the change in claimholders’

values in Section 4.4. Under different settings of bargaining power among contract parties, we observe
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that changes in firm-levered values tend to be positive (negative) for CatEPut contracts with (without)

both provisions, and these shifts are predominantly driven by changes in equity (debt value). Last,

based on our revised trade-off theory, we find that the changes in firm-levered value due to the CatEPut

purchase are predominantly influenced by bankruptcy costs across all contract types. These findings

remain robust across various sample periods and levels of asset volatility. Notably, beyond the analyses

on CatEPuts, the flexibility of our valuation techniques is applicable to assessing the pros and cons

of analogous designs in other contingent capital contracts and their pivotal role in catastrophe risk

management.
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